To address the problem, we examine the MOND theory's implications for the Tully-Fischer relation and derive the necessary expressions and numerical values based on the given data.
(1) Tully-Fischer Exponent under MOND
In MOND theory, the gravitational force is related to the acceleration through the modified second law:
$$F = m \mu\left(\frac{a}{a_0}\right) a,$$
where $\mu(x) = \frac{x}{1+x}$ and $a_0$ is the critical acceleration. In the deep-MOND regime ($a \ll a_0$), $\mu(a/a_0) \approx a/a_0$, leading to:
$$F = \frac{m a^2}{a_0}.$$
For a circular orbit, the centripetal acceleration is $a = v^2 / r$, and the gravitational force is $F = G M m / r^2$. Equating these:
$$\frac{G M m}{r^2} = \frac{m (v^2 / r)^2}{a_0} \Rightarrow G M = \frac{v^4}{a_0}.$$
Solving for $M$, we obtain:
$$M = \frac{v^4}{G a_0}.$$
This implies that the total mass $M$ scales with the fourth power of the rotation velocity $v$. Therefore, the Tully-Fischer exponent is:
$$\boxed{4}$$
To verify that MOND operates in the correct regime for NGC 6946, we estimate $a_0$ using the observed flat rotation velocity $v_{c,\infty} = 150 \, \text{km/s} = 1.5 \times 10^5 \, \text{m/s}$ and the total baryonic mass inferred from the Tully-Fischer relation.
From Fig. 4, at $v_{c,\infty} = 150 \, \text{km/s}$, the corresponding total mass is approximately $M_{\text{tot}} = 3.16 \times 10^{10} \, M_\odot$. Converting to kilograms:
$$M = 3.16 \times 10^{10} \times 1.99 \times 10^{30} \approx 6.3 \times 10^{40} \, \text{kg}.$$
Using $G = 6.67 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2}$, we calculate $a_0$:
$$a_0 = \frac{v_{c,\infty}^4}{G M} = \frac{(1.5 \times 10^5)^4}{6.67 \times 10^{-11} \times 6.3 \times 10^{40}}.$$
$$v^4 = (1.5)^4 \times 10^{20} = 5.06 \times 10^{20} \, \text{m}^4/\text{s}^4,$$
$$G M = 4.2 \times 10^{30} \, \text{m}^3/\text{s}^2,$$
$$a_0 = \frac{5.06 \times 10^{20}}{4.2 \times 10^{30}} \approx 1.2 \times 10^{-10} \, \text{m/s}^2.$$
This value matches the expected order of magnitude for $a_0$, confirming that the observed acceleration $a = v^2 / r$ in the outer regions of NGC 6946 (e.g., $a \sim 7 \times 10^{-11} \, \text{m/s}^2$ at $r = 10 \, \text{kpc}$) is in the MOND regime ($a \ll a_0$).
(2) Expression for $a_0$
From the MOND analysis for circular motion in the deep-MOND regime, we derived the relation:
$$M = \frac{v_{c,\infty}^4}{G a_0}.$$
Solving for $a_0$, the expression for the critical acceleration is:
$$\boxed{a_0 = \frac{v_{c,\infty}^4}{G M_{\text{tot}}}}$$
This expression links the critical MOND acceleration to the observed rotation velocity and the total baryonic mass of the galaxy.
(3) Numerical Value of $a_0$
Using the observed values for NGC 6946:
- $v_{c,\infty} = 1.5 \times 10^5 \, \text{m/s}$,
- $M_{\text{tot}} \approx 6.3 \times 10^{40} \, \text{kg}$,
- $G = 6.67 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2}$,
we compute:
$$a_0 = \frac{(1.5 \times 10^5)^4}{6.67 \times 10^{-11} \times 6.3 \times 10^{40}} = \frac{5.06 \times 10^{20}}{4.2 \times 10^{30}} \approx 1.2 \times 10^{-10} \, \text{m/s}^2.$$
Thus, the numerical value of $a_0$ is:
$$\boxed{1.2 \times 10^{-10}}$$
This value is consistent with the MOND prediction and confirms that the galaxy operates in the MOND regime.
Final Answers
(1) The Tully-Fischer exponent within MOND is $\boxed{4}$. Using NGC 6946 data, the calculation confirms that MOND operates in the correct regime.
(2) The expression for $a_0$ is $\boxed{a_0 = \frac{v_{c,\infty}^4}{G M_{\text{tot}}}}$.
(3) The numerical value of $a_0$ is $\boxed{1.2 \times 10^{-10}}$ m/s².